

Severe Influenza: Management and Research Challenges

Michael G. Ison, MD MS FIDSA FAST

Professor, Division of Infectious Diseases & Organ Transplantation Transplant & Immunocompromised Host Infectious Diseases Service Northwestern University Feinberg School of Medicine

> New Jersey Infectious Diseases Society – Renaissance Woodbridge Hotel 25 April 2018

Disclosures

- Research Support[°]
 - Beckman Coulter, Cephied, Chimerix, Emergent BioScience, Gilead, Janssen/Johnson & Johnson, Shire
- Paid Consultation
 - Celltrion, Genentech/Roche, Janssen, Toyama/MediVector, Seqirus, Shionogi, VirBio
- Unpaid Consultation
 - GlaxoSmithKline, Romark, Vertex
- Data & Safety Monitoring Board Participation
 - 。 GlaxoSmithKline, Shionogi

As of 3/17/18; [°] Paid to Northwestern University.

Severe Influenza

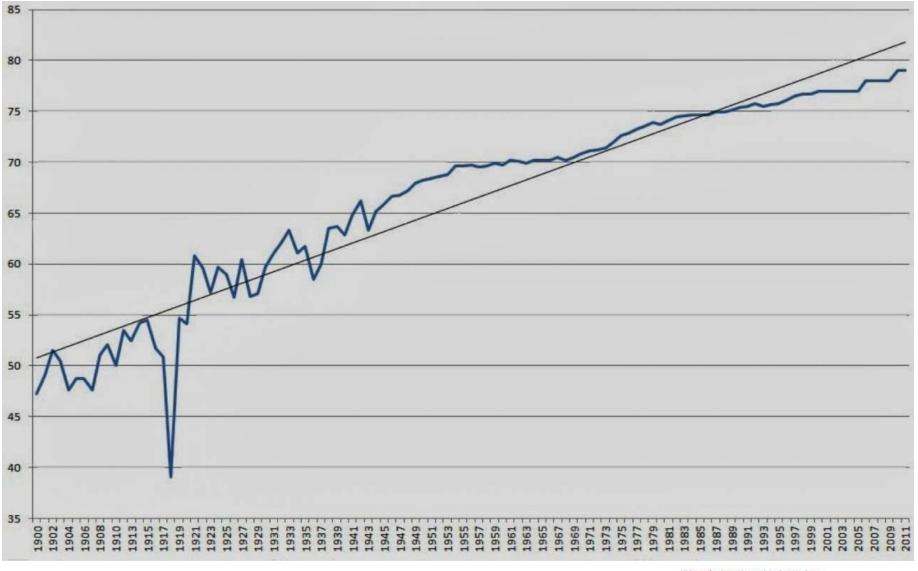
- •Influenza: Epidemiology & Seasonality
- •Severe Influenza: Risk & Definitions
 - Hospitalized adults
 - $_{\circ}$ Immunocompromised
- •Challenges to Influenza Research
 - $_{\odot}$ Challenges of studies in hospitalized adults
 - Novel Scoring and Outcomes Measures

Epidemiology & Importance

Influenza: *Epidemic Impact*

- 25-50 Million influenza cases/year
- Excess mortality (25,000 excess deaths/ yr)
- Excess hospitalization (226,000/year)
- 2-3 fold increase in pneumonia rate
- Total annual costs: \$25 billion in the US
- 10%: Direct costs of increased medical care
 Superinfections, exacerbation of CHF, RAD
- 90%: Indirect costs (lost productivity, employee absenteeism)

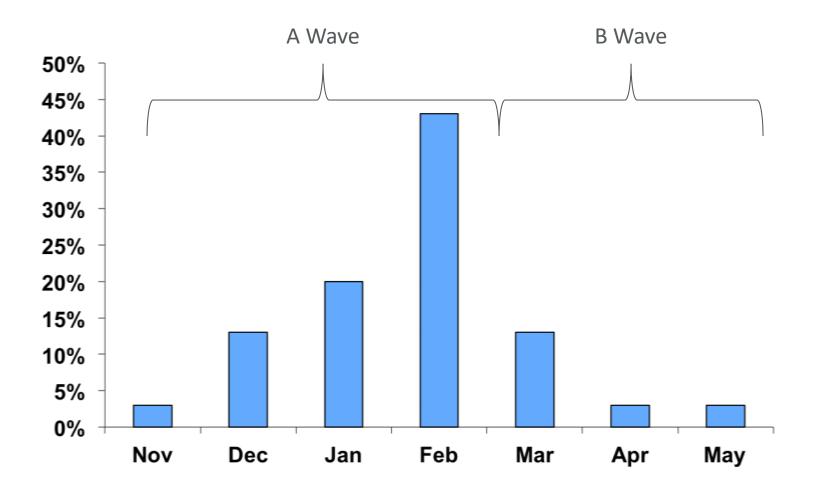
Northwestern Medicine^{*} Thompson *et al.* Influenza and other respiratory viruses. 2009; 3:37-49. Thompson *et al.* JAMA. 2004;292:1333-1340. MMWR. 2010; 59: 1057-1062.

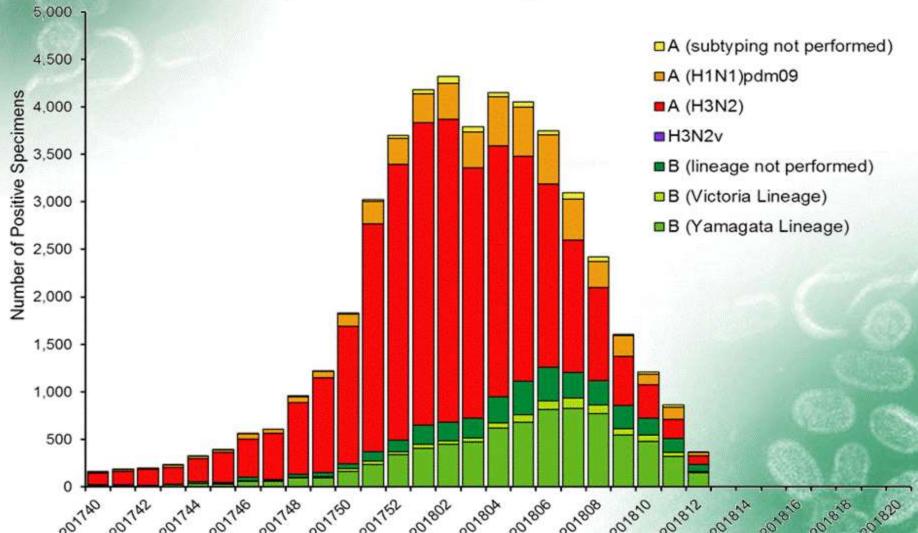

Influenza: Epidemic Impact

Age-Specific Annual Burden of Influenza in the United States

AGE (YR)	Outpatient Visits	Hospitalized Days	Days of Productivity Lost	Life Years Lost
<5	3,728	280	5,328	11
5-17	3,718	9	6,666	3
18-49	5.270	144	10,178	36
50-64	4,329	345	6,616	92
65+	14,309	958	15,215	468
Total US Burden	31,354	3,131	44,003	611

Molinari *et al.* Vaccine. 2007;25:5086-5096.


Influenza: An Important Impact on Life Expectancy


Influenza: Seasonal Epidemiology

Northwestern Medicine[•] **CDC.** *MMWR.* July 28, 2006;55 (RR-10):1-42.

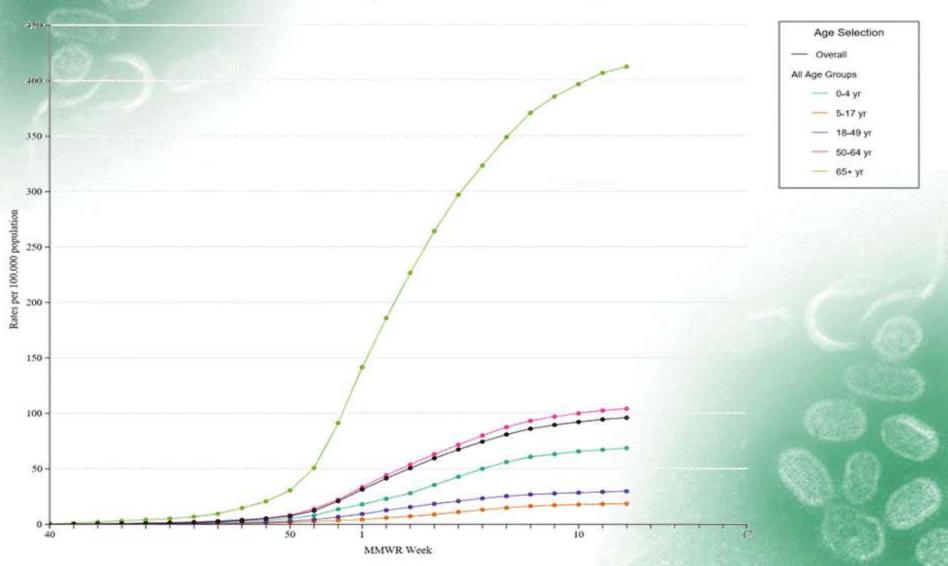
A Weekly Influenza Surveillance Report Prepared by the Influenza Division

Influenza Positive Tests Reported to CDC by U.S. Public Health Laboratories, National Summary, 2017-2018 Season

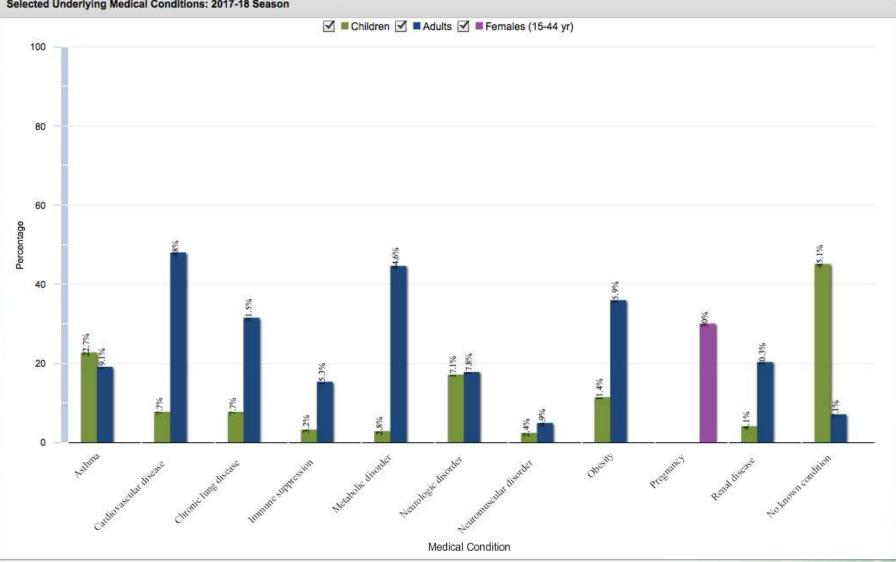
A Weekly Influenza Surveillance Report Prepared by the Influenza Division

E.

Submitted to CDC by U.S. Public Health Laboratories, Cumulative, 2017-2018 Season Influenza Positive Specimens Reported by Influenza A(H3N2) Influenza A(H1N1)pdm09 3C.2a1 U.S. Public Health Laboratories, 131 Cumulative, 2017-2018 season 12% 3C.3a. 3174 38 4% 7697 890 6B.1 3C.2a 578 873 571_ 100% 84% 4796 30048 Influenza B Victoria Influenza B Yamagata V1A 40 26% Influenza A(H3 N2) In fluen za A(H1 N1 b dm09) Influenza A(subtype unknown) Influenza B Victoria V1A-Y3 Influenza B Yamagata 2Del 611 Influenza 8 (i neag e n ot d eterm in ed) 113 100% 74%


Sequence Results, by Genetic HA Clade/Subclade, of Specimens

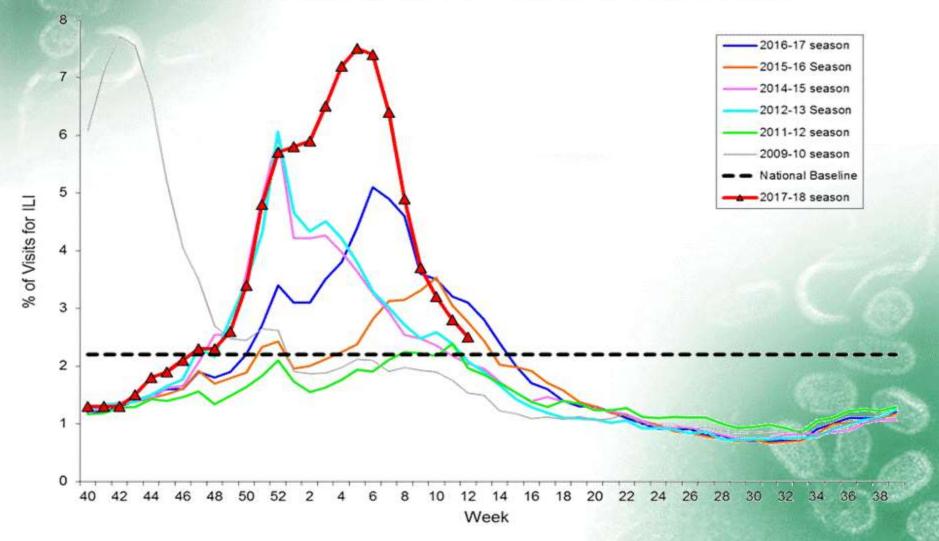
FLUVIEW

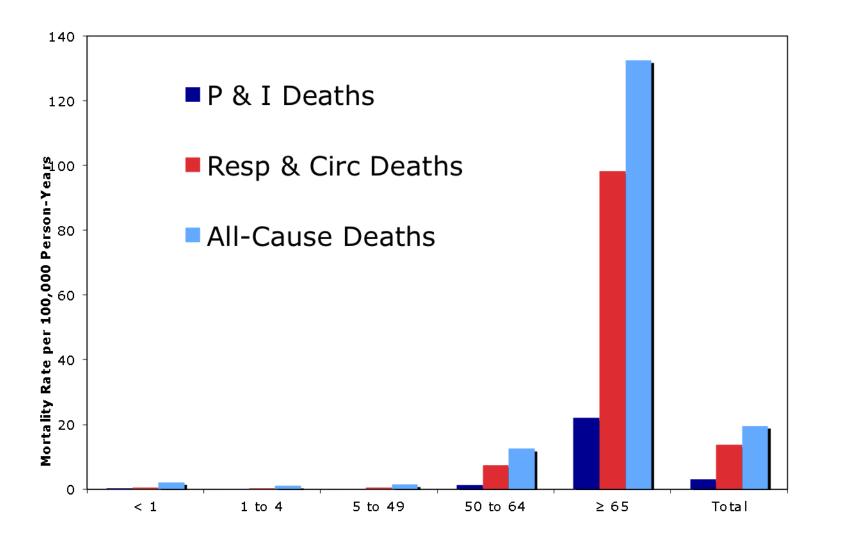

A Weekly Influenza Surveillance Report Prepared by the Influenza Division Laboratory-Confirmed Influenza Hospitalizations

Preliminary cumulative rates as of Mar 24, 2018

Laboratory Confirmed Hospitalized Influenza

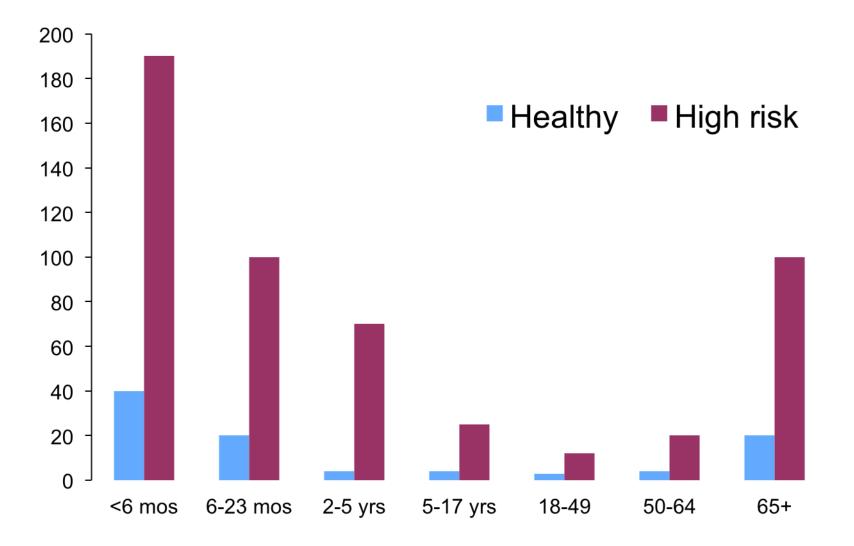
Selected Underlying Medical Conditions: 2017-18 Season



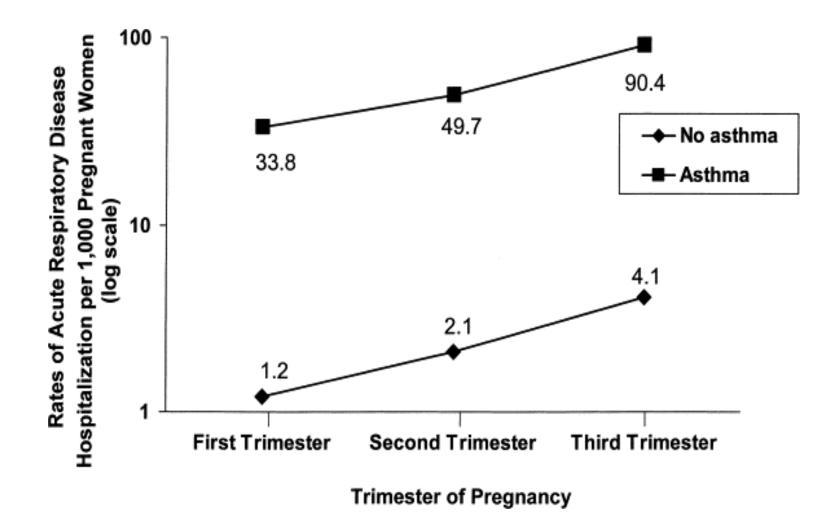

A Weekly Influenza Surveillance Report Prepared by the Influenza Division

IF W

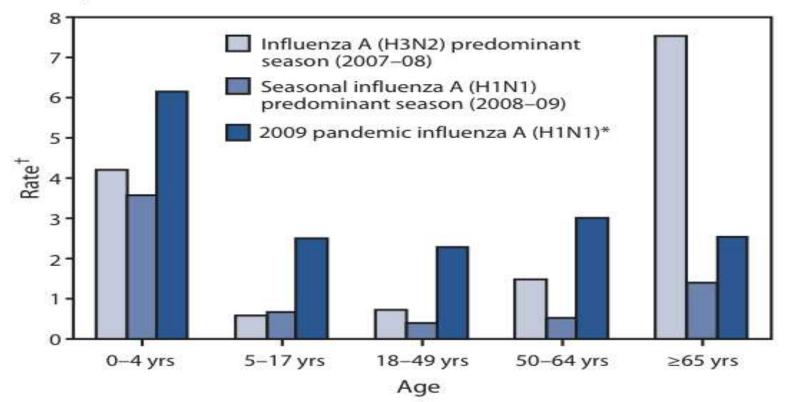
Percentage of Visits for Influenza-like Illness (ILI) Reported by the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet), Weekly National Summary, 2017-2018 and Selected Previous Seasons


Seasonal Influenza: Mortality

Thompson, et al. JAMA. 2003; 289:179-186.


Seasonal Influenza: Hospitalizations

Glezen WP. Am Rev Respir Dis. 1987;136:550-555.


Influenza in Pregnant Women: Hospitalization

Northwestern Hartert *et al.* Am J Obstet Gynecol. 2003; 189: 1705-1712.

Influenza Mortality: Trends Over Time

FIGURE 1. Cumulative rate of hospitalizations during three influenza seasons, by age group — Emerging Infections Program, United States, 2007–2010

* 2009 Pandemic Influenza A(H1N1) hospitalization data from September 1, 2009–January 21, 2010.

⁺ Per 10,000 population.

Influenza Mortality: Impact of Pandemics

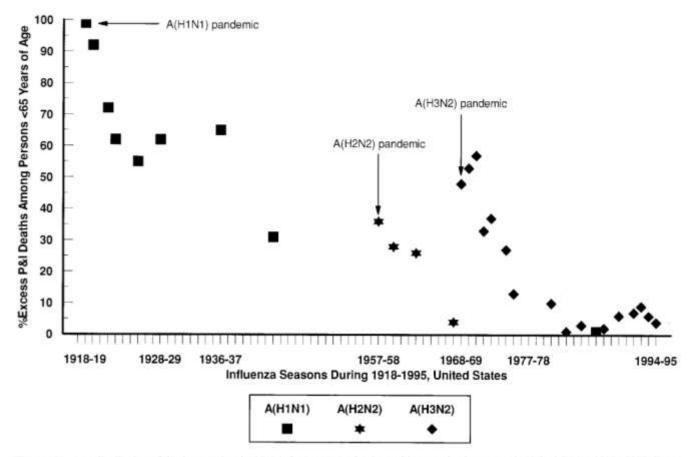


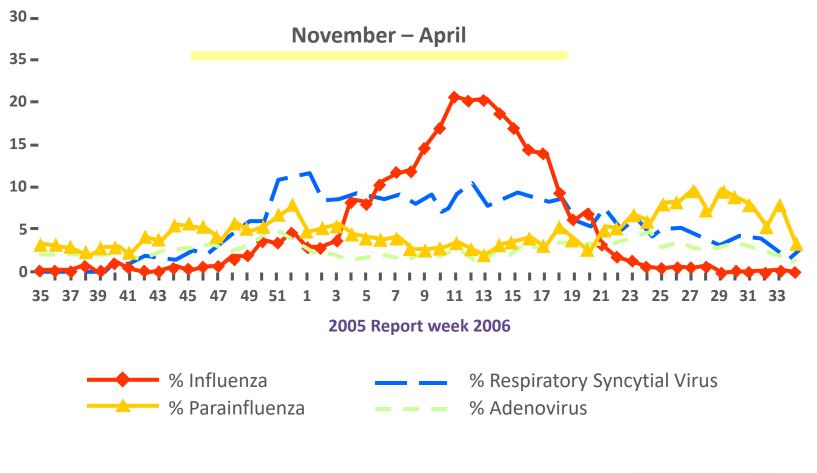
Figure 1. Age distribution of deaths associated with 3 influenza A pandemics and interpandemic seasons in United States, 1918–1995. Data from tables 1–3 are plotted graphically for influenza A (H1N1), A (H2N2), and A (H3N2). For influenza A (H1N1) seasons, only data point for 1986–1987 season was included, which was the only season when excess mortality was attributed solely to A (H1N1) viruses. Data points since 1968 are based on our analysis of pneumonia and influenza (P&I) mortality data.

Influenza: Risk Groups

Risk Factor	Examples and Comments
Age <5 yr	Increased risk especially for children <2 yr of age; highest hospitalization rates among children <1 yr
Pregnancy	Risk of hospitalization increased by a factor of 4 to 7, as compared with age- matched nonpregnant women, with highest risk in third trimester
Chronic cardiovascular condition	Congestive heart failure or atherosclerotic disease; hypertension not shown to be an independent risk factor
Chronic lung disorder	Asthma or COPD, cystic fibrosis
Metabolic disorder	Diabetes
Neurologic condition	Neuromuscular, neurocognitive, or seizure disorder
Immunosuppression	Associated with HIV infection, organ transplantation, receipt of chemotherapy or corticosteroids, or malnutrition
Morbid obesity†	Suggested but not yet proved to be an independent risk factor for complica- tions requiring hospitalization or ICU admission and possibly for death
Hemoglobinopathy	Sickle cell anemia
Chronic renal disease	Renal dialysis or transplantation
Chronic hepatic disease	Cirrhosis
Long history of smoking	Suggested but not yet proved to be an independent risk factor
Long-term aspirin therapy in children	Risk of Reye's syndrome; drugs containing salicylates should be avoided in children with influenza
Age ≥65 yr	Highest case fatality rate but lowest rate of infection

COPD denotes chronic obstructive pulmonary disease, HIV human immunodeficiency virus, and ICU intensive care unit.
 Morbid obesity is defined as a body-mass index (the weight in kilograms divided by the square of the height in meters) of 40 or more.

Influenza: Diagnosis & Surveillance



Influenza-Like Illness

Northwestern Medicine^{*} Public Health Agency of Canada. *Flu Watch.*

Contemporary Rapid Diagnostics: A Step Forward

Digital Immunoassays: Influenza A vs. B

Influenza A					Influenza B					
Study (Reference), Test	TP	FN	Sensitivity (95% Cl)	Sensitivity (95% Cl)	Study (Reference), Test	TP	FN	Sensitivity (95% Cl)	Sensitivity (95% CI)	
Bruning et al (44), Quidel Sofia	6	3	0.67 (0.36-0.88)		Bruning et al (44), Quidel Sofia	4	6	0.40 (0.17-0.69)		
Busson et al (45), Quidel Sofia	41	17	0.71 (0.58-0.81)		Busson et al (45). Quidel Sofia	6	Ĩ.	0.55 (0.28-0.79)	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
Dunn et al (50), Quidel Sofia	46	2	0.96 (0.86-0.99)			St	Č.			
Hazelton et al (58), Quidel Sofia	21	8	0.72 (0.54-0.85)		Dunn et al (50), Quidel Sofia	51	1	0.98 (0.90-1.00)	_	
Hazelton et al (57), Quidel Sofia	25	10	0.71 (0,55-0.83)		Hazelton et al (58), Quidel Sofia	2	4	0.33 (0.10-0.70)		
Leonardi et al (64), Quidel Sofia	79	21	0.79 (0.70-0.86)		Hazelton et al (57), Quidel Sofia	4	8	0.33 (0.14-0.61)		
Lewandrowski et al (65), Quidel Sofia	260	73	0.78 (0.73-0.82)		Leonardi et al (64), Quidel Sofia	26	2	0.93 (0.78-0.98)		•
Noh et al (75), Quidel Sofia	145	51	0.74 (0.67-0.80)		Lewandrowski et al (65), Quidel Sofia	211	34	0.86 (0.81-0.90)		-
Rath et al (81), Quidel Sofia	54	15	0.78 (0.67-0.86)		Rath et al (81), Quidel Sofia	3	1	0.75 (0.30-0.95)		
Ryu et al (84), Quidel Sofia	69	4	0.95 (0.87-0.98)	-•	Ryu et al (84), Quidel Sofia	55	5	0.92 (0.82-0.97)		-
Selove and Rao (88), Quidel Sofia	102	144	0.41 (0.35-0.47)		Selove and Rao (88), Quidel Sofia	18	30	0.38 (0.26-0.52)		
Tuttle et al (91), Quidel Sofia	50	12	0.81 (0.70-0.89)		Tuttle et al (91), Quidel Sofia	64	25	0.72 (0.62-0.80)		
Dunn et al (50), BD Veritor	45	3	0.94 (0.83-0.98)		Dunn et al (50), BD Veritor	49	з	0.94 (0.84-0.98)		
Hassan et al (55), BD Veritor	83	9	0.90 (0.82-0.95)		Hassan et al (55), BD Veritor	21	3	0.88 (0.70-0.96)		-
Leonardi et al (64), BD Veritor	64	36	0.64 (0.54-0.73)		Leonardi et al (64), BD Veritor	22	6	0.79 (0.61-0.90)		<u> </u>
Mese et al (68), BD Veritor	45	10	0.82 (0.70-0.90)		Mese et al (68), BD Veritor	50	18	0.74 (0.62-0.83)		-
Ndegwa et al (72), BD Veritor	270	77	0.78 (0.73-0.82)		Ndegwa et al (72), BD Veritor	46	26	0.64 (0.52-0.74)		
Ryu et al (84), BD Veritor	64	9	0.88 (0.79-0.94)		Ryu et al (84), BD Veritor	49	11	0.82 (0.70-0.90)	_	•
Pooled sensitivity (95% Crl)			0.80 (0.73-0.86)	•	Pooled sensitivity (95% Crl)			0.77 (0.65-0.85)		•
			<u></u>							0
			0	0.33 0.67 1				0	0.33 0.62	

Merckex et al. Annal Int Med. 2017;167: 394-409.

Contemporary Rapid Diagnostics: A Step Forward

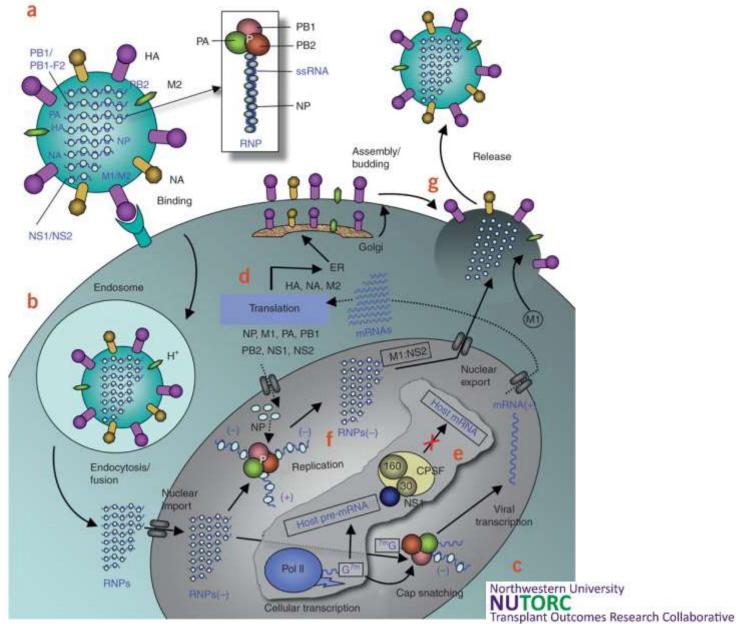
Rapid NAAT: Influenza A vs. B

Influenza A					Influenza B						
Study (Reference), Test	TP	FN	Sensitivity (95% Cl)	Sensitivity (95% CI)	Study (Reference), Test	TP	FN	Sensitivity (95% CI)	Sensitivity	(95% CI)	
Bell and Selvarangan (19), Alere	103	13	0.89 (0.82-0.93)		Bell and Selvarangan (19), Alere	58	0	1.00 (0.94-1.00)			-1
Busson et al (45), Alere	53	5	0.91 (0.81-0.96)		Busson et al (45), Alere	6	5	0.55 (0.28-0.79)		•	
Chiarella et al (46), Alere	31	16	0.66 (0.52-0.78)		Chiarella et al (46), Alere	8	7	0.53 (0.30-0.75)		· · · · ·	
Hazelton et al (57), Alere	28	8	0.78 (0.62-0.88)		Hazelton et al (57), Alere	9	3	0.75 (0.47-0.91)	-	-	-
Hurtado et al (59), Alere	30	2	0.94 (0.80-0.98)	-+	Hurtado et al (59), Alere	16	1	0.94 (0.73-0.99)		_	-
Nguyen Van et al (73), Alere	30	2	0.94 (0.80-0.98)		Nguyen Van et al (73), Alere	8	0	1.00 (0.68-1.00)			-
Nolte et al (76), Alere	56	21	0.73 (0.62-0.82)		Nolte et al (76), Alere	15	1	0.94 (0.72-0.99)			-
Binnicker et al (41), cobas Liat	6	0	1.00 (0.61-1.00)		Binnicker et al (41), cobas Liat	21	0	1.00 (0.85-1.00)			-
Chen et al (18), cobas Liat	79	1	0.99 (0.94-1.00)	-	Chen et al (18), cobas Liat	42	2	0.95 (0.84-0.99)			-+
Chen et al (18), cobas Liat	94	3	0.97 (0.91-0.99)	-	Chen et al (18), cobas Liat	100	0	1.00 (0.96-1.00)			
Melchers et al (67), cobas Liat	51	5	0.91 (0.81-0.96)	ia ∎	Melchers et al (67), cobas Liat	30	0	1.00 (0.89-1.00)			
Nolte et al (76), cobas Liat	77	0	1.00 (0.95-1.00)	-							
Pooled sensitivity (95% Crl)			0.92 (0.85-0.96)	•	Nolte et al (76), cobas Liat	16	0	1.00 (0.81-1.00)			
					Pooled sensitivity (95% Crl)			0.95 (0.87-0.99)			•
			0	0.33 0.67 1				2			
								0	0.33	0.67	

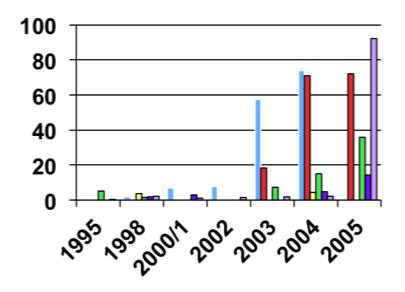
Merckex et al. Annal Int Med. 2017;167: 394-409.

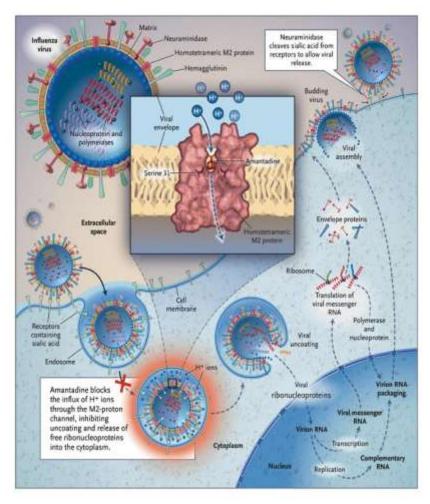
Contemporary Rapid Diagnostics: A Step Forward

Table 2. Overall and Subgroup Analyses of Pooled Rapid Test Accuracy Estimates for Influenza A and B, by Index Test Type*


Index Test Type	Influer	nza A	a B	
	Pooled Sensitivity (95% Crl), %	Pooled Specificity (95% Crl), %	Pooled Sensitivity (95% Crl), %	Pooled Specificity (95% Crl), %
Overall				
Traditional RIDTs (94 influenza A studies; 30 influenza B studies)	54.4 (48.9 to 59.8)	99.4 (99.1 to 99.7)	53.2 (41.7 to 64.4)	99.8 (99.7 to 99.9)
DIAs (18 influenza A studies; 17 influenza B studies)	80.0 (73.4 to 85.6)	98.3 (97.4 to 98.9)	76.8 (65.4 to 85.4)	98.7 (97.5 to 99.4)
Rapid NAATs (12 influenza A studies; 12 influenza B studies)	91.6 (84.9 to 95.9)	99.2 (98.6 to 99.7)	95.4 (87.3 to 98.7)	99.4 (98.9 to 99.8)
Difference in sensitivities, overall				
Traditional RIDTs vs. DIAs	-25.5 (-33.4 to -17.0)		-23.5 (-37.9 to -7.7)	5
Traditional RIDTs vs. rapid NAATs	-37.1 (-44.2 to -28.6)	151	-41.7 (-54.0 to -28.5)	-
DIAs vs. rapid NAATs	-11.5 (-19.5 to -2.9)		-18.2 (-30.6 to -6.9)	5

Merckex et al. Annal Int Med. 2017;167: 394-409.

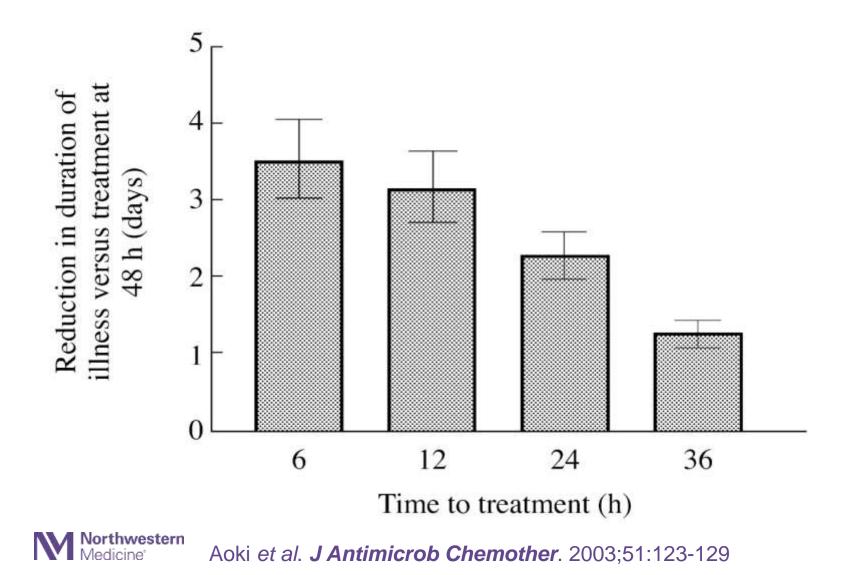

Influenza Virus: Replication & Antiviral Targets



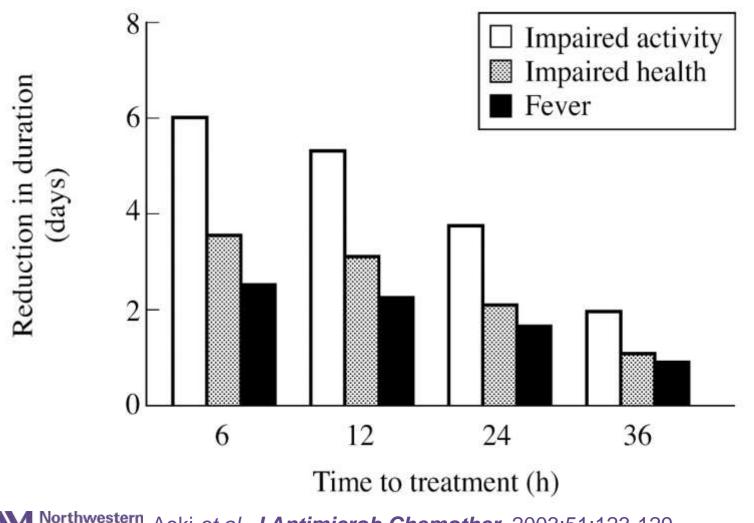
Available Agents: M2 Inhibitors

- Due to widespread resistance, M2 Inhibitors are not recommended
 - Amantadine
 - Rimantadine

Northwestern Hayden. *N Eng J Med*. 2006; 354:785-788. Bright RA. *JAMA*. 2006;295:891-895. Medicine*


Available Neuraminidase Inhibitors

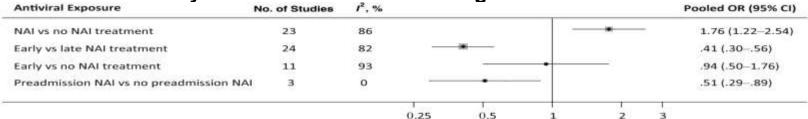
	Laninamivir (Inavir®)	Oseltamivir (Tamiflu®)	Peramivir	Zanamivir (Relenza®)
Structure:		$\begin{array}{c} H_{3}C \longrightarrow O \\ H_{3}C \longrightarrow O \\ O \longrightarrow O \\ H_{3}C \\ H_{3}C \\ NH_{2} \\ \end{array} \xrightarrow{O - CH_{2}} O - CH_{2} \\ CH_{3} \\ \end{array}$	$H_2N \rightarrow NH O H_{N_{12}} OH OH OH OH OH OH CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_$	
Dosing frequency	40mg Single dose	75mg BID 5 days	600mg QD 5-10 days	10mg BID 5 days
Route of administration	Inhaled	Oral	Parenteral	Inhaled


Northwestern Medicine[®]

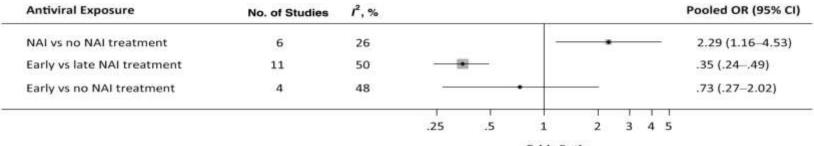
Bantia et al. Antiviral Res. 2006; 69: 39-45. Peramivir Investigator Brochure V.4 Jul 2009; oseltamivir, zanamivir & laninamivir package inserts.

Treatment Efficacy: Oseltamivir

Treatment Efficacy: Oseltamivir



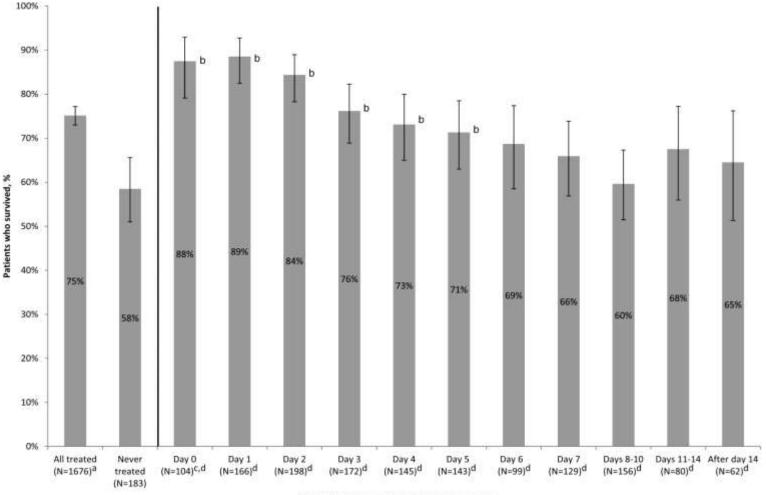
Morthwestern Aoki et al. J Antimicrob Chemother. 2003;51:123-129


Antiviral Therapy: *Hospitalized*

Antiviral Exposure	No. of Studies	<i>1</i> ² , %	_	Pooled OR (95% CI)
NAI vs no NAI treatment	20	49		.72 (.51–1.01)
Early vs late NAI treatment	25	52	-101-	.38 (.27–.53)
Early vs no NAI treatment	9	77		.35 (.18–.71)
Preadmission NAI vs no pre-admission NAI	2	0	· · · · · · · · · · · · · · · · · · ·	.59 (.21-1.71)

Pooled Analyses from Studies Examining ICU Admission or Death

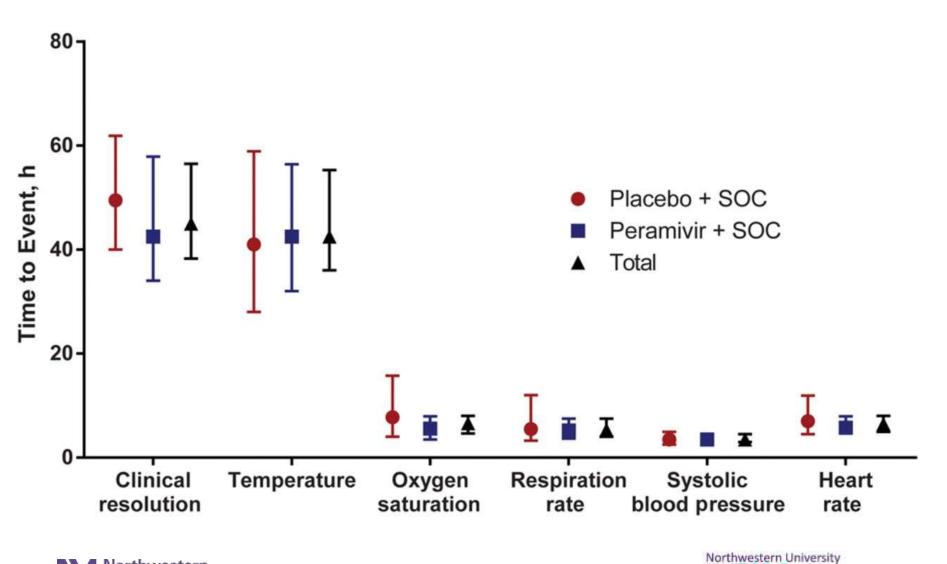
Pooled Analyses from Studies Examining A(H1N1)pdm09-Associated Pneumonia



Odds Ratio

Northwestern Medicine

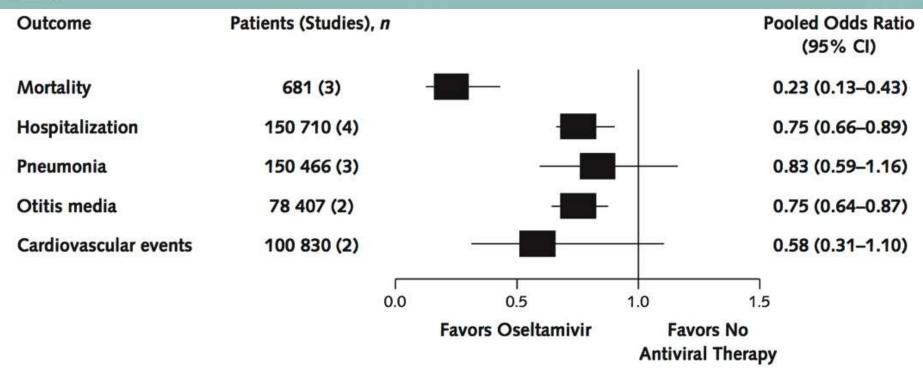
Muthuri SG et al. J Infect Dis. 2013;207:553-563.


Treatment Effective within 5 days

Time of Treatment, days after symptom onset

Northwestern Medicine^{*} Louie *et al. Clin Infect Dis.* 2012; 55: 1198-1204. Lee & Ison. *Clin Infect Dis.* 2012; 55: 1205-1208.

Peramivir: IV Treatment of Influenza



Northwestern de Jong *et al. Clin Infect Dis.* 2014;59:e172-e185

Transplant Outcomes Research Collaborative

Effect of NAI Therapy on Patient Outcomes

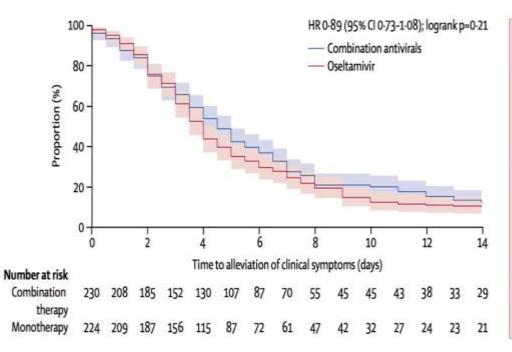
Figure. Random-effects meta-analysis of oral oseltamivir versus no antiviral therapy based on studies that provided adjusted effect measures.

Treatment of High Risk Adults and Children

- Most current guidelines recommend early treatment
- Do not wait for testing results to start therapy

Table 2. Association Between Neuraminidase Inhibitor Administration and Hospital Admission

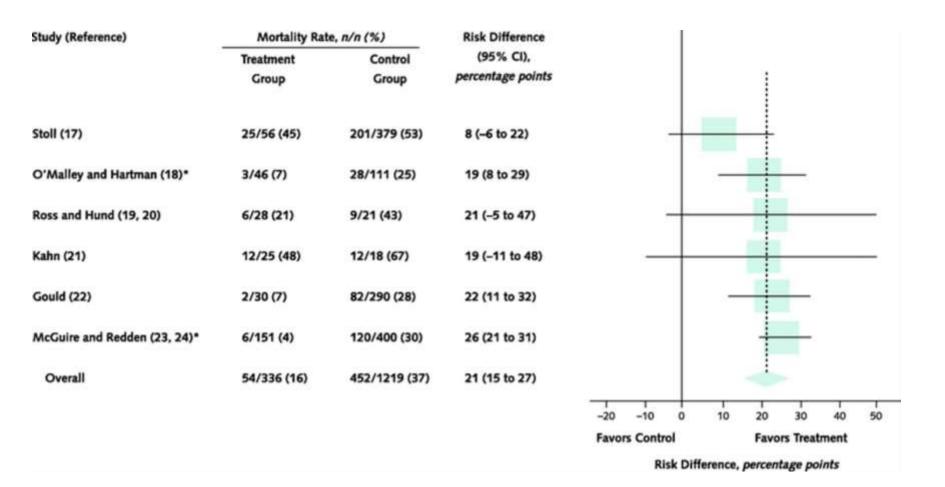
	Unadjusted Analysis		Adjusted Analysi	S ^a
Population	Unadjusted OR (95% CI)	P Value	Adjusted OR (95% CI)	P Value
Patients with laboratory-confirmed or clinically diagnosed A(H1N1)pdm09 influenza (n = 3376)	0.23 (0.19 to 0.28)	<.001	0.24 (0.20 to 0.30)	<.001
Patients with laboratory-confirmed A(H1N1)pdm09 influenza (n = 3085)	0.23 (0.19 to 0.28)	<.001	0.24 (0.19 to 0.29)	<.001
Adults (aged ≥16 years) (n = 1506)	0.26 (0.19 to 0.35)	<.001	0.26 (0.19 to 0.35)	<.001
Children (aged <16 years) (n = 1747)	0.22 (0.17 to 0.30)	<.001	0.25 (0.18 to 0.34)	<.001
Patients with at least 1 high-risk condition (n = 1019)	0.26 (0.19 to 0.37)	<.001	0.27 (0.19 to 0.38)	<.001
Early neuraminidase inhibitor treatment (≤2 days after onset) vs later (>2 days) in patients with laboratory-confirmed or clinically diagnosed A(H1N1)pdm09 influenza (n = 473)	0.51 (0.28 to 0.93)	.031	0.44 (0.23 to 0.86)	.016


*Adjusted for treatment propensity (by quintile) and community-based antibiotic use.

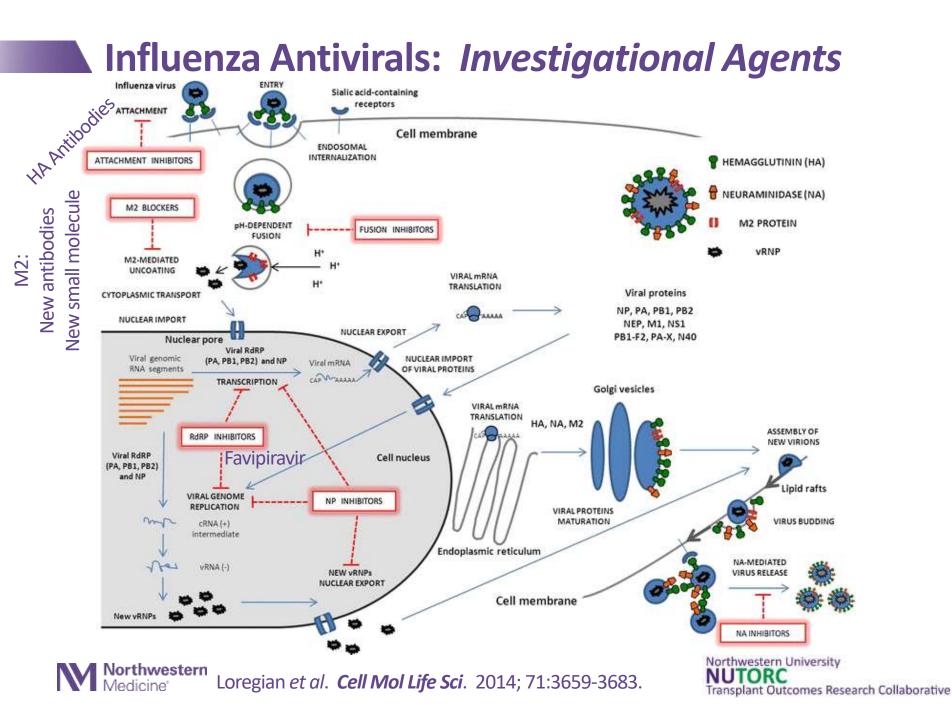
Venkatesan et al. Clin Infect Dis. 2017; 64: 1328-1334.

Treatment of High Risk Adults and Children

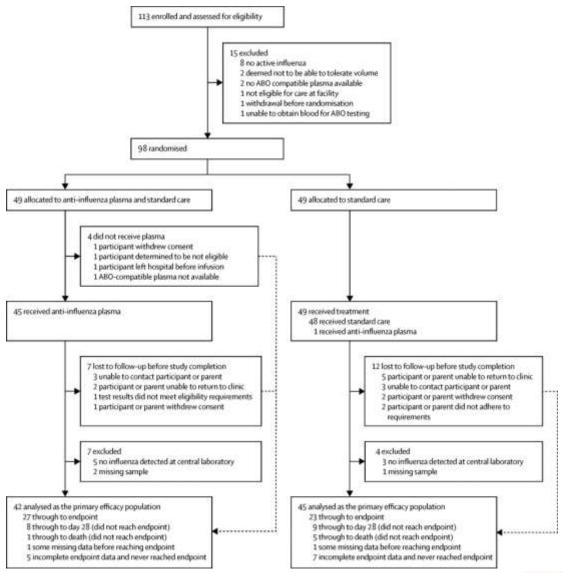
- One completed prospective, randomized study
 - Patients at high risk of complications
 - Randomized to Triple Combination vs. Oseltamivir BID
 - TCAD: Oseltamivir 75mg, Amantadine 100mg, Ribavirin 600mg



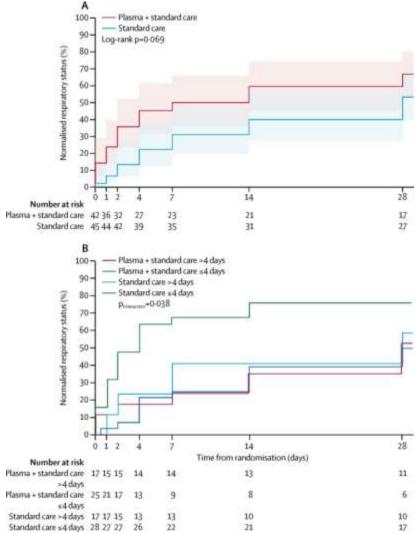
Combination group (n=230)	Monotherapy group (n=224)	p value
4-5 (4-0-5-0)	4-0 (3-5-4-5)	0-21
1-0 (1-0-1-5)	1-0 (0-5-1-5)	0-59
5-0 (4-5-6-0)	4-0 (3-5-5-0)	0-10
7-5 (7-0-8-0)	6-5 (6-0-7-5)	0-0086
7-0 (6-0-7-5)	6-0 (5-0-6-5)	0-019
4-5 (4-0-5-0)	4-0 (3-5-4-5)	0.44
1.0†	1-0 (0-5-1-0)	0-69
4-5 (4-0-5-0)	4-5 (4-0-5-0)	0-30
7-5 (7-0-7-5)	6-5 (6-0-7-0)	0-0033
7-0 (6-0-7-5)	6-0 (5-0-6-5)	0-0086
	4-5 (4-0-5-0) 1-0 (1-0-1-5) 5-0 (4-5-6-0) 7-5 (7-0-8-0) 7-0 (6-0-7-5) 4-5 (4-0-5-0) 1-0† 4-5 (4-0-5-0) 7-5 (7-0-7-5)	45 (40-5:0) 40 (3:5-4:5) 10 (10-1:5) 10 (0:5-1:5) 50 (4:5-6:0) 40 (3:5-5:0) 75 (7:0-8:0) 65 (6:0-7:5) 70 (6:0-7:5) 60 (5:0-6:5) 45 (4:0-5:0) 40 (3:5-4:5) 10† 10 (0:5-1:0) 45 (4:0-5:0) 45 (4:0-5:0) 75 (7:0-7:5) 65 (6:0-7:0)



Venkatesan et al. Clin Infect Dis. 2017; 64: 1328-1334.


Antiviral Therapy: Plasma

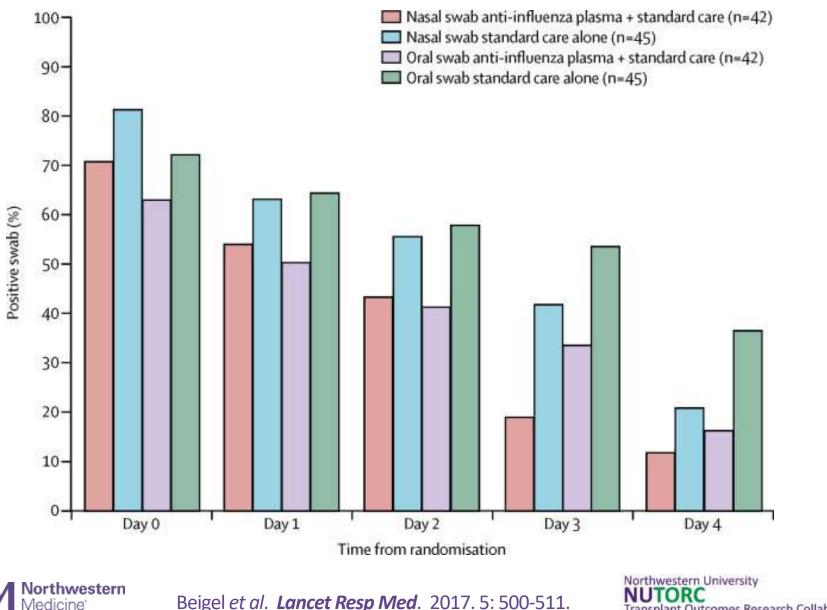
Treatment: High Dose Influenza-Specific Plasma



Northwestern University NUTORC Transplant Outcomes Research Collaborative

Beigel et al. Lancet Resp Med. 2017. 5: 500-511.

Treatment: High Dose Influenza-Specific Plasma

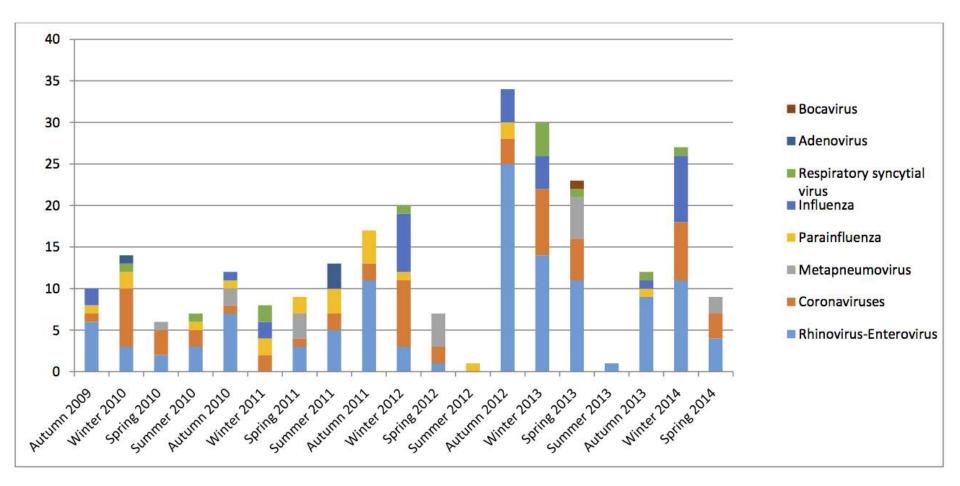


Kaplan-Meier curves of normalised respiratory status over time with intention-to-treat analyses in the primary efficacy population Normalised respiratory status over time, by randomised treatment (A) and by randomised treatment and days from symptoms onset to randomisation.

Beigel et al. Lancet Resp Med. 2017. 5: 500-511.

Treatment: High Dose Influenza-Specific Plasma

Beigel et al. Lancet Resp Med. 2017. 5: 500-511.


JTORC Transplant Outcomes Research Collaborative

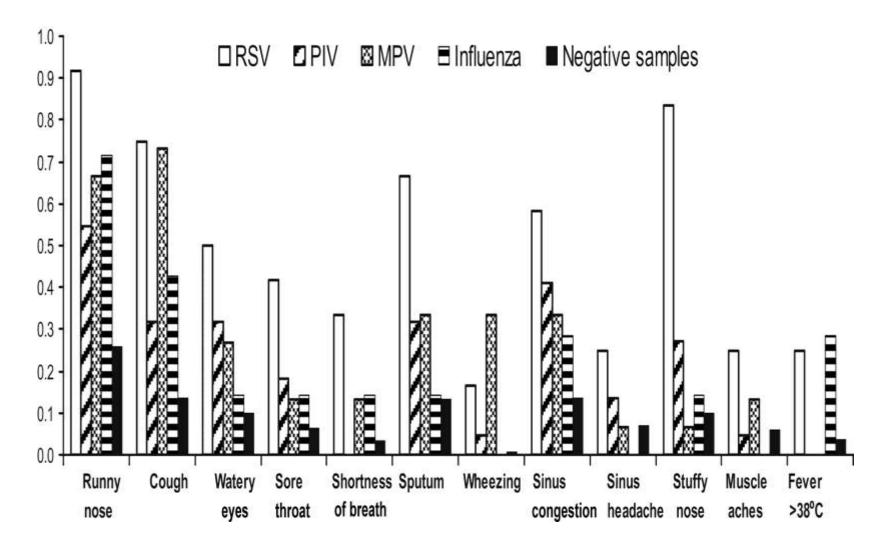
Influenza: Immunocompromised

Epidemiology of RVIs: Lung Transplantation

Peghin et al. Am J Transplt. 2016. ePub Ahead of Print.

Epidemiology of RVI: Risk Factors

- Solid Organ Transplant
 - Early onset post Tx (<3 m)
 - Steroid boluses, OKT3
 - Young children (<1 year)
 - Lung Transplantation
- Stem Cell Transplant
 - Early onset post-Tx
 - Chronic GVHD
 - Lymphopenia


1.0 • .9 cumulative incidence of respiratory virus .8 .7 CD4+ T cell <100 .6 .5 .4 p=0.004 .3 .2 CD4+ T cell >100 0.0 400 0 200 600 800

days post-transplant

• Allogeneic HSCT (OR 5.26, 95%CI 1.05-27.5)

Northwestern Medicine* Chakrabarti *et al.* **Transplantation.** 2001. Ljungman *et al.* **BMT**. 2001;28:479-484.

Epidemiology of RVI: *Clinical Presentation in HSCT*

Northwestern Medicine®

Peck et al. **Blood.** 2007;110:1681-1688.

Epidemiology of RVI: *Clinical Presentation in SOT*

	Adults	Children	p value*
Fever >38°C	115/144 (80%)	78/82 (95%)	0.003
Cough	132/145 (91%)	67/73 (92%)	1.000
Sore throat	50/134 (37%)	30/51 (59%)	0.013
Rhinorrhoea	40/134 (30%)	42/59 (71%)	<0.001
Headache	33/136 (24%)	26/50 (52%)	0.001
Myalgias	70/135 (52%)	21/43 (49%)	0.866
Gastrointestinal symptoms	66/154 (43%)	39/83 (47%)	0.636
Pneumonia on chest radiograph or CT scan	60/149 (40%)	13/81 (16%)	<0.001
Admission to hospital	112/154 (73%)	55/83 (66%)	0.373
Admission to the intensive care unit	27/154 (17-5%)	10/83 (12-0%)	0.357
Mechanical ventilation	18/153 (12%)	3/83 (4%)	0.063
Antiviral treatment within 48 h	43/138 (31%)	47/77 (61%)	<0.001
Antiviral treatment after 48 h	95/138 (69%)	30/77 (39%)	<0.001
Death	10/154 (7%)	0/83 (0%)	0.016

*Statistical differences are by χ^2 test.

Table 2: Clinical presentation and complications of influenza A in adult and paediatric recipients of solid-organ transplants

Kumar et al. Lancet Infect Dis. 2010; 10: 521-526.

Epidemiology of RVI: Long Term Complications

Multivariable survival model

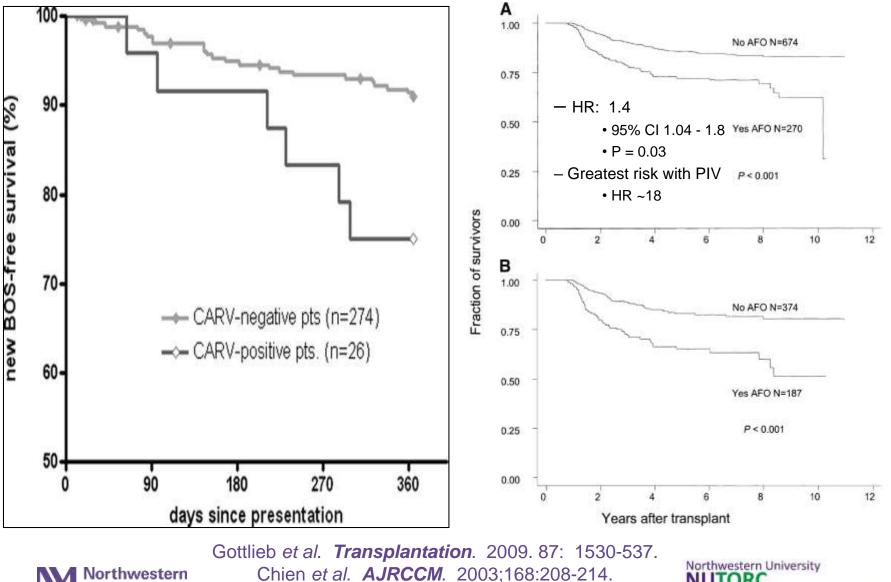
	Multivariable surv model with time-d events			
Variable	Hazard ratio (95% Cl)	P-value	Study, year of publication	Odds ratio (95% CI)
			Khalifah, 2004' —	- 0.87 (0.35-2.13)
RVI	2.6 (1.6, 4.4)	< 0.001	Larcher, 20051	2.00 (0.11-36.31)
A2 rejection	0.46 (0.29, 0.74)	< 0.001	Soccal, 2009'	0.50 (0.26-0.96)
Lung fungal	2.4 (1.5, 3.9)	< 0.001	Kumar, 2010 ²	7.00 (1.88-26.10)
BOS	7.4 (4.0, 13.4)	< 0.001	Overall (95% CI)	1.35 (0.41-4.43)*
Tx type: single versus bilateral/other	1.03 (0.32, 3.3)	0.96		
Tx type: heart/lung versus bilateral/other	1.7 (1.1, 2.6)	0.014	.027544 1 Risk of acu	36.305 te rejection
Tx type: living donor versus bilateral/other	3.6 (1.8, 7.3)	< 0.001	Viral infection not detected	Viral infection detected

rejection; BOS, bronchiolitis obliterans syndrome; Tx, transplant.

Table 5

Liu *et al*. *Transplant Infect Dis*. 2009; 11:304-312. Vu *et al*. *Am J Transplant*. 2011; 11:1071-1078.

Northwestern University NUTORC Transplant Outcomes Research Collaborative

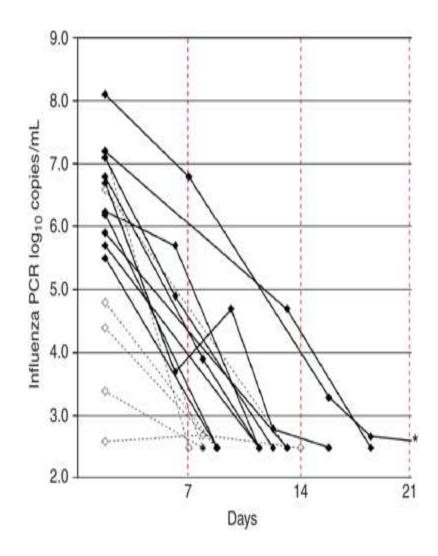

% Weight

30.3

11.5

25.3

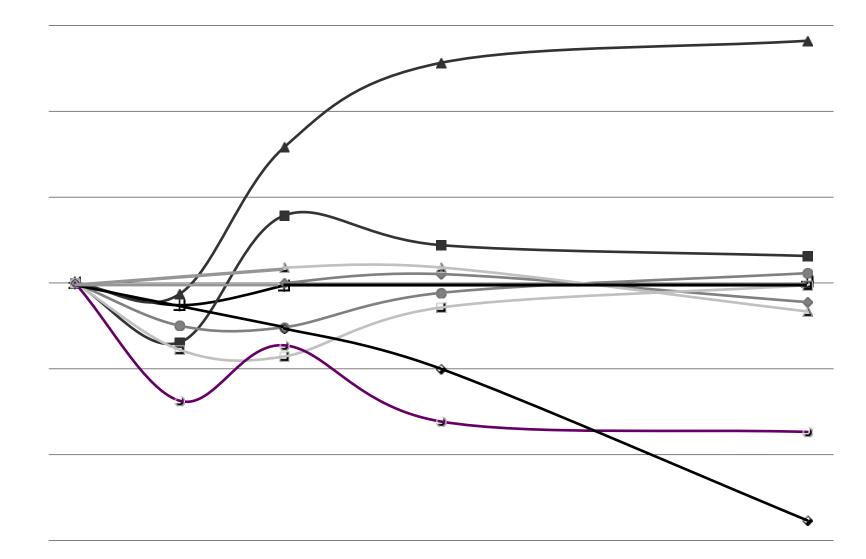
Epidemiology of RVI: *Long Term Complications*


Erard *et al.* **J Infect Dis**. 2006; 193: 1619-1625.

Medicine

NUTORC Transplant Outcomes Research Collaborative

Treatment of Influenza


- Antiviral Therapy and Outcomes
 - No prospectively collected data
 - Most data with NAIs > M2 Inhibitors
 - Reduced mortality
 - M2 Inhibitors: 60% vs. 70%
 - NAI: Few deaths reported with use
 - $_{\odot}~$ Reduced viral shedding at day 10 ~
 - M2 Inhibitors 20% vs. 50%
 - Lower rate of pneumonia
 - M2 inhibitors: 11% vs. 21%
 - NAI: 0-5% vs. 21%
 - Reduced risk of BOS
 - Risk of resistance emergence

Ison MG. *Antiviral Therapy*. 2007; 12:627-638. Ison MG *et al. J Heart Lung Transplant*. 2008; 27: 282-288. Khanna *et al. Transpl Infect Dis*. 2009; 11:100-105.

Treatment of Influenza

Ison *et al.* J Heart Lung Transplant. 2008; 27: 282-288.

Treatment of Influenza

	Not admitted to the ICU	Admitted to the ICU	p value*
Early antiviral therapy (within 48 h)	83/180 (46%)	7/35 (20%)	0.007
Delayed antiviral therapy (after 48 h)	97/180 (54%)	28/35 (80%)	0.007
Diabetes mellitus	56/199 (28%)	19/37 (52%)	0.01
Antilymphocyte globulin use in the previous 6 months	12/200 (6%)	6/37 (16%)	0.043
Abnormal chest imaging at presentation	46/193 (24%)	27/37 (73%)	<0.001
Lymphopenia at time of presentation	94/162 (58%)	22/28 (79%)	0.064

Table 3: Univariate analysis of factors associated with admission to the intensive care unit (ICU)

Kumar et al. Lancet Infect Dis. 2010; 10: 521-526.

Risk Score for Influenza: HSCT

	Criteria	Patients 237 (N, %)	Progression to LRTI 37 (n, %)	Adjusted Hazard Ratio (95% CI)	Weighin g criteria	Assigne d weights (score)
				4.1		
1	ANC <500/μL	11 (5)	7 (64)	(1.4-11.6)	>2.5	3
				2.6		
2	ALC <200/μL	35 (15)	11 (31)	(1.02-6.4)	>2.5	3
				2.5		
3	Age ≥40 years	154 (65)	28 (18)	(1.1-5.6)	2.0-2.5	2
	Myeloablative conditioning			1.2		
4	regimen	98 (41)	17 (17)	(0.6-2.3)	<2.0	1
	GVHD			1.0		
5	(acute or chronic)	149 (63)	19 (13)	(0.5-2.2)	<2.0	1
				0.89		
6	Corticosteroids ⁺	117 (49)	17 (15)	(0.4-1.8)	<2.0	1
	Recent [†] or pre-engraftment			0.68		
7	allo-HSCT	21 (9)	5 (24)	(0.2-2.3)	<2.0	1

⁺Within 30 days of assessment

Low Risk: 0-2; Moderate Risk: 3-6; High Risk 7-12

Kmeid et al. Bio Blood Marrow Transplant.

2016; 22: 542-548.

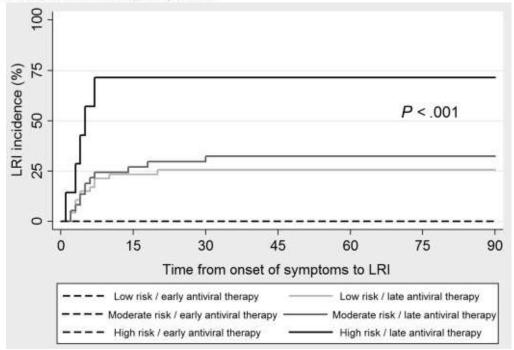

Risk Score for Influenza: HSCT

Table 3

Incidence of LRI and Influenza-Associated Death Stratified by ISI Risk Groups and Antiviral Therapy (N = 142)

Risk Groups as Defined by the ISI	Total			Antivi	iral Therapy			
			Early (within 48 hours of symptom onset)		Late (after 48 hours of symptom onset)		of	
	n	LRI	Influenza-Related Death	n	LRI/Death	n	LRI	Death
Low-risk (ISI of 0 to 2)	78	13 (17)	2 (3)	13	0	48	13 (27)	2 (4)
Moderate-risk (ISI of 3 to 6)	53	15 (28)	2 (4)	9	0	38	13 (34)	2 (5)
High-risk (ISI of 7 to 12)	11	5 (45)	2 (18)	3	0	7	5 (71)	2 (29)

Note: Data required for generating ISI were missing in 4 patients.

Kmeid *et al.* **Bio Blood Marrow Transplant**. 2016; 22: 542-548.

Treatment of Influenza: Unanswered Questions

Optimal Duration of Antiviral Therapy

- Patients have prolonged shedding
- Premature interruption of therapy could result in resistance and clinical decline
- Many experts recommend a duration > 5 days
 - Many recommend that duration is guided by duration of shedding
- Optimal Dose of Therapy
 - $_{\odot}~$ Studies have failed to document improved outcome with high dose oseltamivir
 - 2 of the 3 studies demonstrated a lower rate of resistance with the higher dose
- Role of IV Therapy, Antibodies and Combination
- Management of Resistant Influenza

Influenza Resistance Testing: Genotypic & Phenotypic

Classification	Abbreviations	Influenza A	Influenza B
Normal Inhibition	NI	<10-fold above normal inhibition	<5-fold above normal inhibition
Reduced Inhibition	RI	10 to 100-fold above normal inhibition	5 to 50-fold above normal inhibition
Highly Reduced Inhibition	HRI	>100-fold above normal inhibition	>50-fold above normal inhibition

Drug	N1	N2	N9	В
Oseltamivir	H275Y N295S	E119V R292K	R292K	H273Y
Zanamivir	Q136K			
Peramivir	H275Y	E119V R292K		H273Y

http://www.who.int/influenza/gisrs_laboratory/antiviral_susceptibility/nai_overview/en/

Northwestern Medicine

Questions?

Michael G. Ison, MD MS 312-695-4186 mgison@northwestern.edu

Challenges of Clinical Trials in Hospitalized

- Significant variation in indication for admission
- Poor Recognition of influenza among hospitalized patients
- Recruitment hurdles
 - $_{\odot}\,$ Small numbers spread with significant geographic and seasonal dispersion
 - $_{\odot}\,$ Difficulty getting consent: late results, need for urgent therapy
- Significant variation in clinical disease present in the admitted patients
- Disease pathogenesis, clinical course, and prognosis are effected by:
 - Age of the patient, Co-morbidities
 - $_{\rm \odot}\,$ Time to presentation for care
 - Type/subtype of virus, Antiviral susceptibility
 - Immunocompentence of patients
- Inability for some hospitalized patients to provide assessment of current symptoms (intubated, short of breath, communications challenges)

Northwestern University

nsplant Outcomes Research Collaborative

- More challenging to control confounding medications
- Most would consider a placebo controlled study unethical

Ison *et al.* J Infect Dis. 2010; 201: 1654-1652.

Endpoints Used in Clinical Studies: Completed Studies

• IV Peramivir (Hospitalized)

- Primary Outcome: Time to Clinical Resolution (Kaplan-Meier Estimate day 10)
 - Normalization of at least 4 of the 5 signs within the respective normalization criteria, maintained for at least 24-hours: normal temperature (≤37.2° C), oxygen saturation ≥ 92%, respiratory rate ≤ 24/min, heart rate ≤ 100 bpm, and systolic blood pressure ≥ 90 mmHg
- IV Zanamivir (Hospitalized)
 - Primary Outcome: a composite of vital sign stabilisation and hospital discharge—in the influenza-positive population

• IRC002/High Titer Influenza Plasma

- NCT1052480
- Primary Outcome: Time to normalization of respiratory status (defined as room air saturation of oxygen [SaO2] greater than or equal to 93% AND respiratory rate within normal ranges)

Northwestern de Jong *et al. Clin Infect Dis.* 2014; 59:e172-e185. Medicine^{*} Marty *et al. Lancet Resp Med.* 2017; epub ahead of print.

Panel: Time to clinical response criteria

Temperature*

- s36-6°C (s97-9°F)—axilla, or
- ≤37-2°C (≤99°F)—oral, or
- \$37.7°C (\$99.9°F)—rectal, core, or tympanic

AND

Oxygen saturation†‡

≥95% (without supplemental oxygen)

AND two of the following three:

Respiratory status

- Return to pre-morbid oxygen requirement (patients with chronic oxygen use), OR
- Need for supplemental oxygen (given in any way-ventilator, non-invasive ventilation, facemask, face-tent, or nasal cannula) to no need for supplemental oxygen, OR
- Respiratory rate <24 per min (without supplemental oxygen)

Heart rate

≤100 beats per min

Systolic blood pressure§

≥90 mmHg

OR

Hospital discharge

 Patients who were discharged from hospital alive were deemed to have met the clinical response endpoint at the time of hospital discharge and did not need to have documented resolution of at least four response criteria (ie, achieved treatment success at the time of discharge if not recorded before it).

"Without the use of antipyretics within 8 h. 1A patient with a history of chronic hypoxia (without supplemental anygen) satisfied normalisation others for magen saturation if the value (without supplemental anygen) was a2% from patient's historical anygen saturation baseline as recorded within 12 months before enrolment a documented in the patient's medical records. ITN's requirement was waived for patients with a history of chronic supplemental anygen requirement who had a baseline anygen saturation 55% with supplemental anygen, within 12 months of enrolment as documented in the patient's medical records. Without instroppic support given within 2 h of assessment. For patients who achieved four of the five-vical sign insolution citeria above, maintained for at least 24 h, it was mandatory that both the tomperature and oxygen saturation megones citeria were achieved for the clinical inspores endpoint to be met.

Endpoints Used in Clinical Studies: Ongoing Studies

- Danirixin (CXCR-2 Inhibitor) ± Oseltamivir: NCT02927431
 - Primary Endpoint: Time to Clinical Response: Discharged from hospital or if normalization of the following parameters are maintained for 24 hours: temperature; oxygen saturation; and 2 out of the following 3 parameters, respiratory status/heart rate/systolic blood pressure (SBP). Subjects will be assessed daily during treatment and post treatment inpatient days up to discharge or Day 45. For subjects who are discharged before Day 45, outpatient assessments will also be done on post treatment Day 3 and study Day 45.
- MHAA4549A ± Oseltamivir: NCT02293863
 - Primary Outcome Measures: % with AE, % with anti-MHAA4549A Antibodies, Time to cessation of O₂ support by pulse oximetry
- IRC005/High Titer Anti-Influenza Plasma: NCT02572817
 - Primary Endpoint: 6-Point Ordinal Scale measured at day 7
- INSIGHT Anti-Influenza Hyperimmune Immunoglobulin: NCT02287467
 - Primary Outcome Measure: % of participants at day 7 who died, in ICU, non-ICU with O2 supplementation, non-ICU without O2 supplementation, discharged but not resumed normal activity, discharged and resumed normal activity
- MEDI8852 ± Standard of Care: NCT03028909
 - Primary Outcomes: Time to normalization of respiratory function by day 14 and AE, SAE, AE of Special Interest

Endpoints Used in Clinical Studies: Ordinal Scale

- Five mutually exclusive clinical outcomes are recorded daily for each patient on Days 0 (baseline) and Days 1 – 14
- Outcomes are included as the components of an ordinal endpoint, ranged from most to least severe:
 - o Death
 - ICU with Ventilation
 - ICU w/o Ventilation
 - Hospitalized with supplemental O₂
 - Hospitalized without supplemental O₂
 - Discharged from Hospital with abnormal function
 - Discharge from Hospital with normal function
- The relative frequency distribution and mean score of ordinal components (assuming a unit decrease from 5 for death to 1 for discharge) are plotted daily
- Range of analysis plans under study

Admission Risk Stratification: NEWS

National Early Warning Scores

- Use clinically available data to inform need for escalated clinical assessment
- Early Warning Scores have been developed to facilitate early detection of deterioration by categorising a patient's severity of illness and prompting nursing staff to request a medical review at specific trigger points utilising a structured communication tool while following a definitive escalation plan
- Adopting a National Early Warning Score (NEWS) is beneficial for standardising the assessment of acute illness severity, enabling a more timely response using a common language across acute hospitals nationally [in the United Kingdom]
- Utilized by the National Pandemic Flu Service to triage patients
- Now proposed as a way to stratify patients for enrollment

Admission Risk Stratification: NEWS

- Use of NEWS to categorize patients on admission
 - Score on presentation: respiratory rate, O2 saturation, use of supplemental O2, temperature, systolic BP, heart rate and level of consciousness

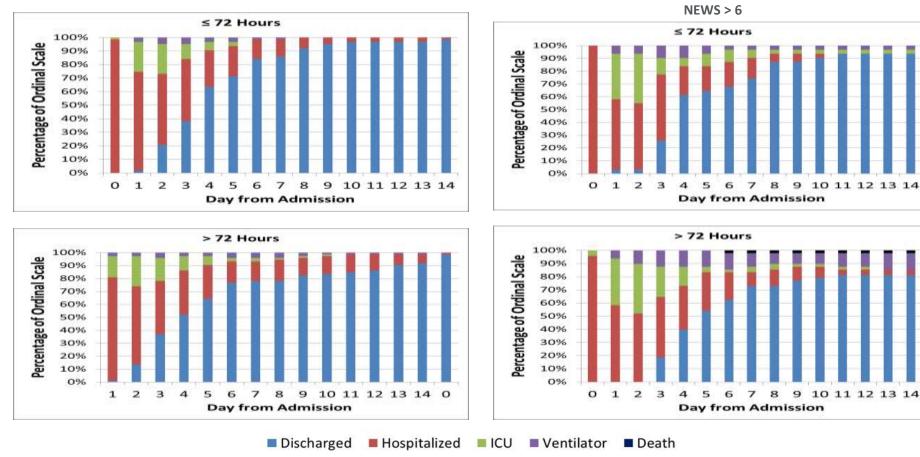
Parameter	3	2	1	0	1	2	3
Resp Rate	<u><</u> 8		9-11	12-20		21-24	<u>></u> 25
O ₂ Sat	<u><</u> 91	92-93	94-95	<u>></u> 96			
Any Supp O ₂ ?		Yes		No			
Temperature	<u><</u> 35.0		35.1 - 36.0	36.1 -38.0	38.1 -39.0	<u>></u> 39.1	
Systolic BP	<u><</u> 90	91-100	101-110	111-219			<u>></u> 220
Heart Rate	<u><</u> 40		41-50	51-90	91-110	111-130	<u>></u> 131
Level of Consciousness				А			V, P, or U

Northwestern http://health.gov.ie/wp-content/uploads/2015/01/NEWSFull-ReportAugust2014.pdf

Potential Endpoints: *Clinical*

• Use of NEWS to categorize patients on admission – NU Data

	NEW	S 1-3	NEW	'S 4-6	NEWS > 6	
Variable	≤ 72 (N=43)	> 72 Hours (N=57)	≤ 72 Hours (N=63)	> 72 Hours (N=73)	≤ 72 Hours (N=31)	> 72 Hours (N=48)
Age (Years)						
Mean (SD)	50.1 (21.0)	54.6 (18.4)	53.2 (20.4)	54.7 (19.3)	51.4 (16.7)	56.9 (19.4)
Min, Max	20, 93	22, 92	22, 100	21, 89	20, 80	18, 93
N (%)						
< 50	21 (48.8)	24 (42.1)	27 (42.9)	30 (41.1)	12 (38.7)	15 (31.2)
50-65	11 (25.6)	17 (29.8)	17 (27.0)	21 (28.8)	12 (38.7)	20 (41.7)
> 65	11 (25.6)	16 (28.1)	19 (30.1)	22 (30.1)	7 (22.6)	13 (27.1)
Sex, N (%)						
Female	24 (55.8)	25 (43.9)	44 (69.8)	47 (64.4)	18 (58.1)	23 (47.9)
NEWS Score						
Mean (SD)	2.2 (0.8)	2.1 (0.8)	4.9 (0.8)	4.9 (0.8)	8.6 (1.7)	8.3 (1.4)
Min, Max	1, 3	1, 3	4, 6	4, 6	7, 13	7, 11

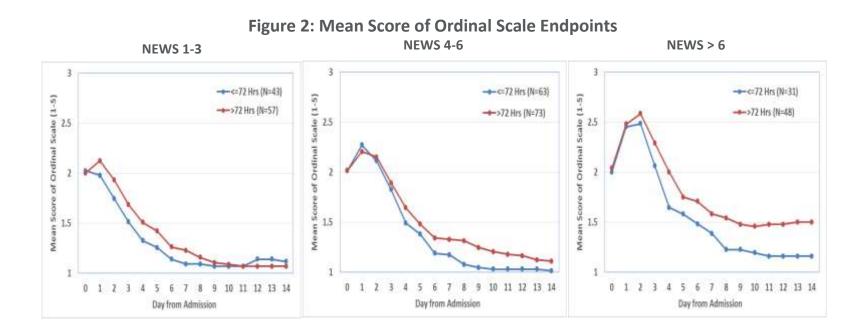


Ison *et al*. Options IX, Chicago. Abstract LBP-17.

Potential Endpoints: Clinical – NEWS Directed Ordinal

• Use of NEWS to categorize patients on admission

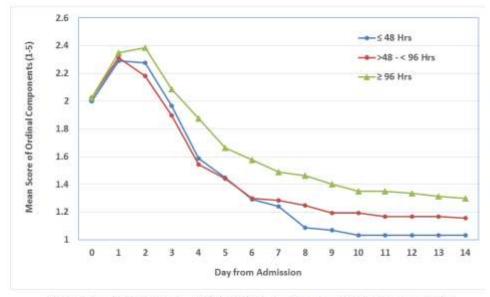
NEWS 4-6



Ison et al. Options IX, Chicago. Abstract LBP-17.

Potential Endpoints: *Clinical*

• Use of NEWS to categorize patients on admission



Ison *et al*. Options IX, Chicago. Abstract LBP-17.

Potential Endpoints: *Clinical – Time Directed Ordinal*

Figure 2: Mean score of ordinal components by days from admission

Score: 1 = Discharged, 2 = Hospitalized, 3 = ICU, 4 = Ventilator, 5 = Death

Table 2: Ordinal logistic model comparing two treatment groups $(\leq 48 \text{ hrs vs} \geq 96 \text{ hrs})$

Days	P value	Odds Ratio	Lower 95% CL	Upper 95% CL
Day 1	0.6607	1.2	0.6	2.4
Day 2	0.3654	1.4	0.7	2.6
Day 3	0.4429	1.3	0.7	2.4
Day 4	0.0481	1.9	1.0	3.7
Day 5	0.1296	1.7	0.9	3.4
Day 6	0.2032	1.6	0.8	3.5
Day 7	0.3034	1.5	0.7	3.5
Day 8	0.0141	3.7	1.3	10.7
Day 9	0.0161	4.1	1.3	12.9

Longitudinal analysis of ordinal endpoint across all 9 days showed an overall odds ratio of 2.1 (95%CI: 1.1 - 3.8) with p-value of 0.0173.

King et al. IDWeek 2016, New Orleans. Abstract 638.

